67 research outputs found

    Ethnicity-specific obesity cut-points in the development of Type 2 diabetes - a prospective study including three ethnic groups in the United Kingdom

    Get PDF
    Aims: Conventional definitions of obesity, e.g. body mass index (BMI) ≥ 30 kg/m2 or waist circumference cut-points of 102 cm (men) and 88 cm (women), may underestimate metabolic risk in non-Europeans. We prospectively identified equivalent ethnicity-specific obesity cut-points for the estimation of diabetes risk in British South Asians, African-Caribbeans and Europeans. Methods: We studied a population-based cohort from London, UK (1356 Europeans, 842 South Asians, 335 African-Caribbeans) who were aged 40–69 years at baseline (1988–1991), when they underwent anthropometry, fasting and post-load (75 g oral glucose tolerance test) blood tests. Incident Type 2 diabetes was identified from primary care records, participant recall and/or follow-up biochemistry. Ethnicity-specific obesity cut-points in association with diabetes incidence were estimated using negative binomial regression. Results: Diabetes incidence rates (per 1000 person years) at a median follow-up of 19 years were 20.8 (95% CI: 18.4, 23.6) and 12.0 (8.3, 17.2) in South Asian men and women, 16.5 (12.7, 21.4) and 17.5 (13.0, 23.7) in African-Caribbean men and women, and 7.4 (6.3, 8.7), and 7.2 (5.3, 9.8) in European men and women. For incidence rates equivalent to those at a BMI of 30 kg/m2 in European men and women, age- and sex-adjusted cut-points were: South Asians, 25.2 (23.4, 26.6) kg/m2; and African-Caribbeans, 27.2 (25.2, 28.6) kg/m2. For South Asian and African-Caribbean men, respectively, waist circumference cut-points of 90.4 (85.0, 94.5) and 90.6 (85.0, 94.5) cm were equivalent to a value of 102 cm in European men. Waist circumference cut-points of 84.0 (74.0, 90.0) cm in South Asian women and 81.2 (71.4, 87.4) cm in African-Caribbean women were equivalent to a value of 88 cm in European women. Conclusions: In prospective analyses, British South Asians and African-Caribbeans had equivalent diabetes incidence rates at substantially lower obesity levels than the conventional European cut-points

    Different in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study

    Get PDF
    Background Conflicting evidence exists regarding the association between saturated fatty acids (SFAs) and type 2 diabetes. In this longitudinal case-cohort study, we aimed to investigate the prospective associations between objectively measured individual plasma phospholipid SFAs and incident type 2 diabetes in EPIC-InterAct participants. Methods The EPIC-InterAct case-cohort study includes 12¿403 people with incident type 2 diabetes and a representative subcohort of 16¿154 individuals who were selected from a cohort of 340¿234 European participants with 3·99 million person-years of follow-up (the EPIC study). Incident type 2 diabetes was ascertained until Dec 31, 2007, by a review of several sources of evidence. Gas chromatography was used to measure the distribution of fatty acids in plasma phospholipids (mol%); samples from people with type 2 diabetes and subcohort participants were processed in a random order by centre, and laboratory staff were masked to participant characteristics. We estimated country-specific hazard ratios (HRs) for associations per SD of each SFA with incident type 2 diabetes using Prentice-weighted Cox regression, which is weighted for case-cohort sampling, and pooled our findings using random-effects meta-analysis. Findings SFAs accounted for 46% of total plasma phospholipid fatty acids. In adjusted analyses, different individual SFAs were associated with incident type 2 diabetes in opposing directions. Even-chain SFAs that were measured (14:0 [myristic acid], 16:0 [palmitic acid], and 18:0 [stearic acid]) were positively associated with incident type 2 diabetes (HR [95% CI] per SD difference: myristic acid 1·15 [95% CI 1·09–1·22], palmitic acid 1·26 [1·15–1·37], and stearic acid 1·06 [1·00–1·13]). By contrast, measured odd-chain SFAs (15:0 [pentadecanoic acid] and 17:0 [heptadecanoic acid]) were inversely associated with incident type 2 diabetes (HR [95% CI] per 1 SD difference: 0·79 [0·73–0·85] for pentadecanoic acid and 0·67 [0·63–0·71] for heptadecanoic acid), as were measured longer-chain SFAs (20:0 [arachidic acid], 22:0 [behenic acid], 23:0 [tricosanoic acid], and 24:0 [lignoceric acid]), with HRs ranging from 0·72 to 0·81 (95% CIs ranging between 0·61 and 0·92). Our findings were robust to a range of sensitivity analyses. Interpretation Different individual plasma phospholipid SFAs were associated with incident type 2 diabetes in opposite directions, which suggests that SFAs are not homogeneous in their effects. Our findings emphasise the importance of the recognition of subtypes of these fatty acids. An improved understanding of differences in sources of individual SFAs from dietary intake versus endogenous metabolism is needed. Funding EU FP6 programme, Medical Research Council Epidemiology Unit, Medical Research Council Human Nutrition Research, and Cambridge Lipidomics Biomarker Research Initiative

    Dietary determinants of changes in waist circumference adjusted for body mass index - a proxy measure of visceral adiposity

    Get PDF
    Background Given the recognized health effects of visceral fat, the understanding of how diet can modulate changes in the phenotype “waist circumference for a given body mass index (WCBMI)”, a proxy measure of visceral adiposity, is deemed necessary. Hence, the objective of the present study was to assess the association between dietary factors and prospective changes in visceral adiposity as measured by changes in the phenotype WCBMI. Methods and Findings We analyzed data from 48,631 men and women from 5 countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Anthropometric measurements were obtained at baseline and after a median follow-up time of 5.5 years. WCBMI was defined as the residuals of waist circumference regressed on body mass index, and annual change in WCBMI (¿WCBMI, cm/y) was defined as the difference between residuals at follow-up and baseline, divided by follow-up time. The association between energy, energy density (ED), macronutrients, alcohol, glycemic index (GI), glycemic load (GL), fibre and ¿WCBMI was modelled using centre-specific adjusted linear regression, and random-effects meta-analyses to obtain pooled estimates. Men and women with higher ED and GI diets showed significant increases in their WCBMI, compared to those with lower ED and GI [1 kcal/g greater ED predicted a ¿WCBMI of 0.09 cm (95% CI 0.05 to 0.13) in men and 0.15 cm (95% CI 0.09 to 0.21) in women; 10 units greater GI predicted a ¿WCBMI of 0.07 cm (95% CI 0.03 to 0.12) in men and 0.06 cm (95% CI 0.03 to 0.10) in women]. Among women, lower fibre intake, higher GL, and higher alcohol consumption also predicted a higher ¿WCBMI. Conclusions Results of this study suggest that a diet with low GI and ED may prevent visceral adiposity, defined as the prospective changes in WCBMI. Additional effects may be obtained among women of low alcohol, low GL, and high fibre intake

    The association between adherence to the Mediterranean diet and hepatic steatosis: cross-sectional analysis of two independent studies, the UK Fenland Study and the Swiss CoLaus Study.

    Get PDF
    The risk of hepatic steatosis may be reduced through changes to dietary intakes, but evidence is sparse, especially for dietary patterns including the Mediterranean diet. We investigated the association between adherence to the Mediterranean diet and prevalence of hepatic steatosis. Cross-sectional analysis of data from two population-based adult cohorts: the Fenland Study (England, n = 9645, 2005-2015) and CoLaus Study (Switzerland, n = 3957, 2009-2013). Habitual diet was assessed using cohort-specific food frequency questionnaires. Mediterranean diet scores (MDSs) were calculated in three ways based on adherence to the Mediterranean dietary pyramid, dietary cut-points derived from a published review, and cohort-specific tertiles of dietary consumption. Hepatic steatosis was assessed by abdominal ultrasound and fatty liver index (FLI) in Fenland and by FLI and non-alcoholic fatty liver disease (NAFLD) score in CoLaus. FLI includes body mass index (BMI), waist circumference, gamma-glutamyl transferase, and triglyceride; NAFLD includes diabetes, fasting insulin level, fasting aspartate-aminotransferase (AST), and AST/alanine transaminase ratio. Associations were assessed using Poisson regression. In Fenland, the prevalence of hepatic steatosis was 23.9% and 27.1% based on ultrasound and FLI, respectively, and in CoLaus, 25.3% and 25.7% based on FLI and NAFLD score, respectively. In Fenland, higher adherence to pyramid-based MDS was associated with lower prevalence of hepatic steatosis assessed by ultrasound (prevalence ratio (95% confidence interval), 0.86 (0.81, 0.90) per one standard deviation of MDS). This association was attenuated [0.95 (0.90, 1.00)] after adjustment for body mass index (BMI). Associations of similar magnitude were found for hepatic steatosis assessed by FLI in Fenland [0.82 (0.78, 0.86)] and in CoLaus [0.85 (0.80, 0.91)], and these were also attenuated after adjustment for BMI. Findings were similar when the other two MDS definitions were used. Greater adherence to the Mediterranean diet was associated with lower prevalence of hepatic steatosis, largely explained by adiposity. These findings suggest that an intervention promoting a Mediterranean diet may reduce the risk of hepatic steatosis

    Acoustic surveillance of cough for detecting respiratory disease using artificial intelligence

    Get PDF
    Research question Can smartphones be used to detect individual and population-level changes in cough frequency that correlate with the incidence of coronavirus disease 2019 (COVID-19) and other respiratory infections? Methods This was a prospective cohort study carried out in Pamplona (Spain) between 2020 and 2021 using artificial intelligence cough detection software. Changes in cough frequency around the time of medical consultation were evaluated using a randomisation routine; significance was tested by comparing the distribution of cough frequencies to that obtained from a model of no difference. The correlation between changes of cough frequency and COVID-19 incidence was studied using an autoregressive moving average analysis, and its strength determined by calculating its autocorrelation function (ACF). Predictors for the regular use of the system were studied using a linear regression. Overall user experience was evaluated using a satisfaction questionnaire and through focused group discussions. Results We followed-up 616 participants and collected >62 000 coughs. Coughs per hour surged around the time cohort subjects sought medical care (difference +0.77 coughs.h(-1); p=0.00001). There was a weak temporal correlation between aggregated coughs and the incidence of COVID-19 in the local population (ACF 0.43). Technical issues affected uptake and regular use of the system. Interpretation Artificial intelligence systems can detect changes in cough frequency that temporarily correlate with the onset of clinical disease at the individual level. A clearer correlation with population-level COVID-19 incidence, or other respiratory conditions, could be achieved with better penetration and compliance with cough monitoring

    Genomic analysis of diet composition finds novel loci and associations with health and lifestyle

    Get PDF
    We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10−8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10−5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15–0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1–0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈−0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction

    Genomic analysis of diet composition finds novel loci and associations with health and lifestyle

    Get PDF
    We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 x 10(-8)), while five of the 21 lead SNPs reach suggestive significance (P < 1 x 10(-5)) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (r(g) approximate to 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|r(g)| approximate to 0.1-0.3) and positive genetic correlations with physical activity (r(g) approximate to 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (r(g) approximate to-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.Public Health and primary carePrevention, Population and Disease management (PrePoD

    Sugar-sweetened beverage consumption may modify associations between genetic variants in the CHREBP (carbohydrate responsive element binding protein) locus and HDL-C (high-density lipoprotein cholesterol) and triglyceride concentrations

    Get PDF
    BACKGROUND: ChREBP (carbohydrate responsive element binding protein) is a transcription factor that responds to sugar consumption. Sugar-sweetened beverage (SSB) consumption and genetic variants in the CHREBP locus have separately been linked to HDL-C (high-density lipoprotein cholesterol) and triglyceride concentrations. We hypothesized that SSB consumption would modify the association between genetic variants in the CHREBP locus and dyslipidemia.METHODS: Data from 11 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (N=63599) and the UK Biobank (N=59220) were used to quantify associations of SSB consumption, genetic variants, and their interaction on HDL-C and triglyceride concentrations using linear regression models. A total of 1606 single nucleotide polymorphisms within or near CHREBP were considered. SSB consumption was estimated from validated questionnaires, and participants were grouped by their estimated intake.RESULTS: In a meta-analysis, rs71556729 was significantly associated with higher HDL-C concentrations only among the highest SSB consumers (beta, 2.12 [95% CI, 1.16-3.07] mg/dL per allele; P<0.0001), but not significantly among the lowest SSB consumers (P=0.81; P-Diff<0.0001). Similar results were observed for 2 additional variants (rs35709627 and rs71556736). For triglyceride, rs55673514 was positively associated with triglyceride concentrations only among the highest SSB consumers (beta, 0.06 [95% CI, 0.02-0.09] In-mg/dL per allele, P=0.001) but not the lowest SSB consumers (P=0.84; P-Diff=0.0005).CONCLUSIONS: Our results identified genetic variants in the CHREBP locus that may protect against SSB-associated reductions in HDL-C and other variants that may exacerbate SSB-associated increases in triglyceride concentrations.Clinical epidemiolog

    Genetic loci influencing kidney function and chronic kidney disease

    Get PDF
    Using genome-wide association, we identify common variants at 2p12-p13, 6q26, 17q23 and 19q13 associated with serum creatinine, a marker of kidney function (P = 10 10 to 10 15). Of these, rs10206899 (near NAT8, 2p12-p13) and rs4805834 (near SLC7A9, 19q13) were also associated with chronic kidney disease (P = 5.0 × 10 5 and P = 3.6 × 10 4, respectively). Our findings provide insight into metabolic, solute and drug-transport pathways underlying susceptibility to chronic kidney disease

    FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals.

    Get PDF
    FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177,330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m(2), P = 1.9 × 10(-105)), and all participants (0.30 [0.30, 0.35] kg/m(2), P = 3.6 × 10(-107)). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] %, P = 2.4 × 10(-16)), and relative weak associations with lower total energy intake (-6.4 [-10.1, -2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (-0.07 [-0.11, -0.02] %, P = 0.004). The associations with protein (P = 7.5 × 10(-9)) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity
    corecore